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REVISION OF THE VAN DEEMTER THEORY FOR DIFFUSION AND PRES- 
SURE DROP IN THE GAS PHASE 
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Department of Chemistry, Hoizizaido University, Sapporo (Japan) 

(Received July 10th 1~65) 

INTRODUCTION 

It is well known that the system of differential equations (I) in Table I under 
the assumption of the constant flow rate of mobile phase shown by eqn. (2) was 
solved rigorously with the conditions (3) and (4) by LAPIDUS AND AUUNDSON~ 
resulring in the expressions (5). This equation was later transformed by VAN DEEMTER 
et cd.2 into the convenient form of Gaussian distribution as given by eqns. (6)-(12). 

In gas chromatography, however, because of the pressure drop along Lhe column, 
these mathematical treatments do not hold strictly, and KAMBARA~ proposed the 
corresponding derivation shown by eqns. (13)-(2x), in which the diffusion of the 
sample component in Lhe gas phase is neglected, and succeeded in elucidating Ihe 
kinetic derivation of the JAMES-MARTIN factor 4. In the present study it is intended 
to clear up mathematically the kinetic role of diffusion and pressure drop in gas 
chromatography. 

The most important mathematical expressions are summarized in Table I and 
the symbols employed are given in Table II. 

MATWEMATICAL FORMULATION OF THE PROBLEM 

As shown by eqns. (13)-(21)) if one ignores the diffusion term, the problem 
can well be solved. In order to introduce the diffusion term, we will employ the re- 
lationship given by eqn. (23)) i.e. the diffusion constant: D gas is inversely proportional 
to the number of particles in unit volume, viz., to the pressure 9, as cited by GLAs- 
STONES and PERRY~. 

Thus, the flux of the sample component is shown by 

f 
D’ aC 

=---_*- 
P ax + uc (27) 

whence eqn. (22) holds, where D* is the diffusion constant at unit pressure. The set 
of differential eqns. (22) is difficult to solve, and so we will assume tilat Sre approxi- 
mate solution thereof could be, in analogy to the VAN DEEMTER theory, rounded into 
the normal distribution form as shown by eqn. (6) including the variance term cr2 which 
consists of two terms, one of which oor2 depends on the rate constant a and the other 
oD2 on the diffusion constant. If one could rationally determine the a2-term, it might 
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TABLE II 

LIST OF SYMBOLS 

Symbol Sigiaijicance Unit OY dimension Equalion 

concentration in gas phase mole cm-3 
same in stationary phase mole cm+ 
initial concentration inj c&cd mole cm-3 
diffusion constant at pressure p crna set-l 
diffusion constant proportionality factor cma se+ atm 
fraction by volume occupied by mobile phase dimensionless 
fraction by volume occupied by stationary phase dimensionless 
distribution coefficient (= C/Cs at equilibrium) 
length of packing 
2 %6$/W 
number of theoretical plates 
pressure of carrier gas, dependent on x 
pressure of carrier gas at column inlet 
pressure of carrier gas at column outlet 
proportionality factor 
Pal?% 
time elapsed after sample feed 
duration of concentration pulse injected 
retention time of sample component 
passing time of carrier gas through the column 

dimensionless 
cm 
atms cm-1 
dimensionless 
atm [ML-IT+] 
atm [M L-1 T-a] 
atm [ML-IT-a] 
atm-l mole cm-3 
dimensionless 
set 
set 
set 

length x 
passing time of carrier gas through the whole 

column length I 
linear gas velocity, dependent on x 
linear gas velocity at column inlet 
linear. gas velocity at column outlet 
gas flow rate per unit cross section of column 
permeability coefficient 
distance from column inlet along the coldmn 
rate constant of dissolution or adsorption 
I -I- (Fs/KF) 
variance of peak 
contribution of diffusion term to variance 
contribution of adsorption rate term to variance 

see 

set 
cm set-1 
cm see-1 
cm se+ 
mole cmWa set+ 
cm3 see-1 atm-1 
cm 
set-l 
dimensionless 
seca 
seca 
scca 

(1)~ (IS), (22) 
I;;# (13)~ (22) 

(23) 
(23) 
(111 (131, (22) 
(11, (131, (22) 

(15) 
(15)1 (17) 
(39) 
(14)-(17) 
((I$’ ‘(‘;i (171 

&j 
I 

(6), (1219 (21) 

(4) 
(101, (20) 

(17)~ (20)~ (251 

(1711 (201, (25) 
(2)~ (14) 

(16) 
(I4), (IS) 

#“3’S (33) 

(7) 
(81, (181. (24) 
(9)s (IS), (25) 

be safe to say that the famous VAN DEE~~ZTER theory could be revised theoretically and 
successfully for the pressure drop along the column and for the pressure-dependent 
diffusion in the gas phase. 

Elimination of the concentration CS in the stationary phase from the eqns. (22) 
gives : 

8% CXK ac D' 
G(x,t) = - - - - . - 

a% cdC D’ 

Es al! + p ’ - + Fs 1’1 
i3W D*d$ a% -.-. --II- -- 

iw atax a.@ +2 dx al& 

ak- D’ dj!~ EC du aC aI< du a% air' ac -w.-.- 
‘ax 

-me--w. 
Es p2 dx dx at Fs &-w 

---_--_-- 
atax Fs 

a ac ., A-- IO, 

F 88 

:. .’ .. This equation is difficult to integrate, since p and zc depend on 

ax 

(28) 

x. However, it 
,:'may ,be considered Lhat the first-order approximate solution of eqn. (28) is shown by 

,: 
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eqns. (6) and (rg), if one neglects the diffusion term. Regarding that the variance 
c2 depends only on ,1~ and not on t, one can obtain the derivatives of C from eqn. (6), 
the insertion of which into eqn. (28) with the assumption : 

t 
TZ = In = -- 

P (29) 

transforms it into the following form (see Appendix I). 

Iq(a,D) = 

aK n* -- 
+ Fs p 

r-E(G)) + 

D” +!#a - 6 @!Ria’ -/- 2 tR’$‘a D* , /.dR’ aK D* 

P 
---------- - - 

a4 $2 p r--- 
Es P2 

(PJJa - $@)a - 2 a’(p’a - +a’) - (tR’)2p 

a3 (30) 

P aK p %tptR’ aK $‘a - pa’ . 
-- 
a3 

-$$‘- -- 
FS a 

-~-_~~~~--~~ 
a3 Es a2 

. (31) 

Here the notation dash implies the differentiation with respect to x. Ignoring 
U(o, 0) and multiplying eqn. (31) by c3, one can write: 

$(%ttR’ - I) + ag (U’p + Up’) = f UP& 

Since zt = wm/2 ~5 (14) and ta’ = 2 $/wzw/~, it is seen that : 

UtR = ‘5 
P 

Further, 
reduced to : 

one can derive zt’$ + up’ = o from eqn. (16), so that eqn. (31) is 

whence 
2 I;&! 

a2 = ---&- tR 
L 2 Fs2Ts 

’ aK5 

Thus the oa2-term shown by eqns. (7)) (18) and (rg) is again confirmed 
different manner from that in our previous publication3, provided that diffusion 
not take place. 

Now we have to solve the simplified form of eqn. (31), namely: 

aK 
- dH(a,D) -I_ ?@iR’ = - upaa’ 

3s 

(32) 

in a 
does 

(33) 

As discussed in Appendix II, under the usual gas chromatographic conditions 
one may simplify the expression H (a,D), so that one has now to integrate: 

J. Chromalog., 23 (x966) 383-391 



388 T. KAMBARA, I<. OHZEKI 

where. us@ = COnSt. and tR’ = 2 $/nzw,t3. Hence, the integration of the left-hand side 
of the above equation yields: 

s ’ ( tR’)2dx = ,-,2$2p j-’ $2. clx = --2$2F j-;; (=f$) * dfi = z2;2F2 ($y’ - 90”) ; 
a 0 

s 1 dtn 
- dx = 

0 dx s In dtn = tn. 
0 

The right-hand side is calculated as follows, 

s 1 62 
cm’.dx = - 

0 2 

Thus, it is clear that : 

C(ZJ) 
pocOt0 exp 

= p,-q--- 
2 7d42 

(34.) 

where : 

2 I;&?Kra 
02 = -I- 

DQZ 

+ p 82 

Pt2 -k po2 

aK2F , -y-zo” 
--- 

PO2 
(35) 

DISCUSSION 

If there is no pressure drop and the linear velocity is distributed uniformly 
along the column, the present theory is reduced to the original VAN DEEMTER theory. 
Thus, the famous VAN DEEMTER theory is considered to hold as the limiting law and 
quite legitimate in liquid phase chromatography. 

If one integrates the product of concentration and linear velocity with respect 
to time, the quantity obtained should express the amount of sample component 
that penetrates a cross section of unit area at an arbitrary position. Thus, it follows 
that : 

+-OD C.u.dt = Cotout 
-Co 

(36) 

whence the conservation of material is proved. . . 
The above procedure for evaluating the peak variance was also found success- 

ful, When it was applied to the derivation of the VAN DEEMTER eqns. (6)-(x2) from 
the LAPLDUS-AMUNDSON system of differential eqns. (x)-(4). This result will be 
published elsewhere’. 

The expression for the height equivalent to a theoretical plate (19) is easily de- 
rived from eqns. (34) and (35), and it is found that it has the same form as shown by: 

H =A + ; + cue 
0 

However, the three constants A, B and C depend on pressure and have some- 
what different meanings from those in the original VAN DEEMTER equation. For the 

(37) 

J:.~lzromatog.,~21 (196(i) 383-391 
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elucidation of temperatur.e and pressure dePcndencies of ,plate number?, the form ‘of 
Gaussian distribution seems fundamentally more important and useful, as discussed 
in our former publications. 

differentiation 
as C’ ,= X/E& 

APPENDIX I. DERIVATION OF EQUATION (31) 

In eqn. (6) $, d and tR are functions of x. Expressing the partial 
with respect to x by a dash and that with respect to t by a dot, such 
and 6 = dC/dt, and putting: 

h 
&It0 = --- = cqnst.; f(x) ‘- 

P 
;; $(XJ) (t - tip 

Pt(2 4”’ 
= exp; {h(xJ)); .JJ(X;$) = - 7--: 

TX 
In 5 -- 

P 

one easily derives : 

(t - tR)tR’a -t_ d(t - t&T)2 
j&t’ = -- ----_-- 

cJ3 
-; 

Since we are interested in the 
put t = tR. Then, the u%Ult is: 

I& = jl = I&’ = 0; ii = - z: I It” 

Thus, one obtains: 

.# h 
tR’d + 2 d(t - tR) 

= ---- 
a3 

&C. 

region near the chromatographic peak, we may 
. 

tn”c - 4 tR*d 

63 
for t = tn. 

. . . 

+-,tR) = j$fjtg = 0; +f,tR) = hfic's = - 2 fg; c'(=c,tR> = hf'g; c”(X,tR) =’ 

= 1s 
( tR'j2 

f" - f -&: e'(x,tR) = $ tR'fg 

&(X,tR) = h 
2 y2tf’ + f tRHd --% tR’“‘)g 

where : 

Insertion of’ the above equations into eqn. (28) yields ,eqns. (30) and (31). 

+PPENDIk II. SIMPLWICATION 017 f+,D) AND DERIVATION OF EQNUATION (33)’ ’ 

The function H(a,D) shown by eqn. (30) can be rearranged by means of the 
relationships: 

.’ ’ 

$13’ 
a&- ‘, .,’ 

= - ad’; tlsH 
Fs 

= Fs ((a’)2 + aa”} 

J. Clwovnatog., 21 .(~.c~CG).:383~3gz 
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derived from the first-order approximation given by eqn. (32), and the result 

Fsj?Saa 
- H(a,D) --yKx = 2 (p’)=cf= + 3 $%‘)2 + (h’)=p 

OHZEKI 

is : 

(38) 

The rat% of the third term to the second in the right-hand side of the eqn. (38) is : 

(tin’)= 4 gR= -=-= %a 
3 (a’)2 3 CT= 3 

(39) 

where n, the number of plates, is much greater than unity. Hence one can neglect 
the second term. 

Next, the ratio of the third term to the first is given by: 

p=(tR’)= =p2(tR’)2 -- = 
2 (p’)=tY= 2 &q=tn2 

Employing the equations : 

tR= 
fi = --; tR = 

a2 sq (et3 - fi3) ; tR’ = & (- p=p’) 

one derives 

p2(tR’)2 9 9% 

2 (p’)w = 2 (p$,p;s - I ( I 

2 

Since n is much greater than unity, it is seen that the first term can legiti- 
mately be ignored. 

Thus, the function W(a,D) is simplified into: 

H(a,D) = - =$s (tR’)= 

resulting in eqn. (34). 

SUMMARY 

Provided that the flow rate of carrier gas in a gas chromatographic column is 

(40) 

maintained constant and the pressure and the linear velocity are distributed as shown 
by eqns. (x4)-(16), and also the diffusion coefficient in gas phase is inversely propor- 
tional to the pressure, one can formulate the problem by eqns, (3), (4) and (22). 

Assuming that the solution is shown by a Gaussian distribution as given by eqn. (6), 
the above problem is converted into the integration of the ordinary differential 
eqns. (30) and (31) concerning the peak variance. The calculation provides a revised 
equation for gas chromatographic peak that includes the familiar VAN DEEMTER 

theory as a limiting law. 

J. Ckvomalog., 21 (x966) 383-391 
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