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REVISION OF THE VAN DEEMTER THEORY FOR DIFFUSION AND PRES-
SURE DROP IN THE GAS PHASE
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Department of Chemistvy, Hokkaido Univervsity, Sappovo (Japan)
(Received July 1oth, 1965)

INTRODUCTION

It is well known that the system of differential equations (z) in Table I under
the assumption of the constant flow rate of mobile phase shown by eqn. (2) was
solved rigorously with the conditions (3) and (4) by LAPIDUS AND AMUNDSON!
resulting in the expressions (5). This equation was later transformed by VAN DEEMTER
et al.? into the convenient form of Gaussian distribution as given by eqns. (6)-(12).

In gas chromatography, however, because of the pressure drop along the column,
these mathematical treatments do not hold strictly, and KAMBARAS proposed the
corresponding derivation shown by eqns. (x3)—(2r), in which the diffusion of the
sample component in the gas phase is neglected, and succeeded in elucidating the
kinetic derivation of the JAMES-MARTIN factor?. In the present study it is intended
to clear up mathematically the kinetic role of diffusion and pressure drop in gas
chromatography.

The most important mathematical expressions are summarized in Table I and
the symbols employed are given in Table II.

MATHEMATICAL FORMULATION OF THE PROELEM

As shown by eqns. (13)—(21), if one ignores the diffusion term, the problem
can well be solved. In order to introduce the diffusion term, we will employ the re-
lationship given by eqn. (23), 7.e. the diffusion constant Dggg is inversely proportional
to the number of particles in unit volume, vz2., to the pressure p, as cited by GLAS-
STONE® and PERRYS.

Thus, the flux of the sample component is shown by

D* &C

whence eqn. (22) holds, where D* is the diffusion constant at unit pressure. The set
of differential eqns. (22) is difficult to solve, and so we will assume that the approxi-
mate solution thereof could be, in analogy to the VAN DEEMTER theory, rounded into
the normal distribution form as shown by eqn. (6) including the variance term o2 which
consists of two terms, one of which ¢,2 depends on the rate constant « and the other
op? on the diffusion constant. If one could rationally determine the o2-term, it might
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- TABLE 1I
LIST OF SYMBOLS
.Symbol  Significance Unit or dimension  Equalion
C concentration in gas phase mole cm—3 (1), (13), (22)
Cs same in stationary phase mole cm™3 (), (13), (22)
- Co -initial concentration injected mole cm~3 (4)
Deaug diffusion constant at pressure p cm? sec—? (23)
D* diffusion constant proportionality factor cm2sec—latm (23)
F © fraction by volume occupied by mobile phase dimensionless (1), (13), (=22)
Fg fraction by volume occupied by stationary phase dimensionless (1), (13), (22)
pidg . distribution coefficient (= C/Cg at equilibrium) dimensionless
A length of packing cm (15)
m 2 uplw atm?2 cm™? (15), (17)
N , number of theoretical plates dimensionless (39)
2 pressure of carrier gas, dependent on ¥ atm [M L—-17T-?] (14)—(17)
1 pressure of carrier gas at column inlet atm [M L-1T-2] (14), (15), (x7)
2o : pressure of carrier gas at column outlet atm [M L-1T-2] (x5), (17)
q proportionality factor atm~! mole cm™3 (16)
s Pold1 dlmensxonless (6), (x2), (21)
2 time elapsed after sample feed sec
N duration of concentration pulse injected sec 4
IR retention time of sample component sec (10), (20)
Ty passing time of carrier gas through the column ‘
length X sec (17), (20), {25)
T, passing time of carrier gas through the whole
s .. columnlength! : sec (17), (20), (25)
% linear gas velocity, dependent on x cm sec—? (2), (14)
Uy linear gas velocity at column inlet cm sec™?
Up linear gas velocity at column outlet cm sec™!
‘v gas flow rate per unit cross section of column mole cm—2 sec1 (16)
W permeability coefficient cm? sec~latm—1 (14), (15)
X distance from column inlet along the column cm
o rate constant of dissolution or adsorption sec—1 (1), (3), (33)
B 1 4 (Fg/KF)y dimensionless (x1)
o? variance of peak sec? (7)
rop? contribution of diffusion term to variance sec? (8), (£8), (24)
o2 contribution of adsorption rate term to variance sec? (9), (19), (25)

. be safe to say that the famous VAN DEEMTER theory could be revised theoretically and

'successfully for the pressure drop along the column and for the pressure-dependent
diffusion in the gas phase.

Elimination of the concentration Cg in the stationary phase from the eqns. (22)

'g‘ives: ‘
| Giwt) = 82C oK oC D* C «K D% &C D+dp 8C
e o2 Fg & p otox | Fg P  oa? 72 dx otox
«K D% dp oC du oC oK du 2C oK oC
Fs 2 dx ox dy 0t Fg dx otox Fg ox
o 8C '
—-? 5 = ° o (28)

o Thls equatlon is difficult to integrate, since # and » depend on «. However, 1t
may be cons:dered that the first-order approximate solution of eqn. (28) is shown by
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eqns. (6) and (19), if one neglects the diffusion term. Regarding that the variance
o? depends only on # and not on ¢, one can obtain the derivatives of C from eqn. (6),
the insertion of which into eqn. (28) with the assumption:

Iy
7 (29)

! =1ip =

transforms it into the following form (see Appendix I).

W ” —_— e’ 4t W ’ / 14
H(o,D) = D {1:25]; c 6 pip'c’ + 2 tRfJa}_D PR _oc_I_{iD: , P'o—po

b o) e »’ o8 Fg p° o2
«lX D% ((p"c — po”Yo — 2 o' (p’c — po’) — (IrR')2p
-+ E—;;— { o3 } (30)
/ K tr’ K ‘c — po’ .
H(a.D) + %—-—"—‘r—sué —iiiﬁxﬁ-——%;uf—"—‘,g—‘-’-: o. (31)

Here the notation dash implies the differentiation with respect to ». Ignoring
H(c, D) and multiplying eqn. (31) by ¢?, one can write:

aKo?
Fs

aK :
plutp’ — 1) + (u'p + up’) = -ﬁ—;uybaa’ '

Since u# = wm/2 p (14) and Ir’ = 2 p/mwp, it is seen that:

‘I

ulp' = = > 1
B
Further, one can derive #'p -+ up’ = o trom eqn. (16), so that eqn. (31) is
reduced to:
O,I — Fst ’
=k
whence
2 Fg 2 Fg2T,
2 — = alll
ok 'R GKSF (32)

Thus the o/ 2-term shown by eqns. (7), (18) and (19) is again confirmed in a
different manner from that in our previous publication3?, provided that diffusion does
not take place.

Now we have to solve the simplified form of eqn. (31), namely:

K
— 63K (0,D) + upin’ = “-—l-_,—ujwa’ ‘ (33)
v 4S

As discussed in Appendix II, under the usual gas chromatographic conditions
one may simplify the expression H (0,D), so that one has now to integrate:
aKD* «K
R \2 b ’
Ty (¢rR")2 + uPpir s Uupoa
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where u#p = const. and (g’ = 2 p/mwf. Hence, the integration of the left-hand side
of the above equation yields:

l Po[— 2 753
. S 2. = = e (Pgh —
fo (¢27)%d m2w2f2 f ? m2w2,32 fm ( m ) a7 m3w2ﬂ2 (e Pol)
fl dir dx ‘r déip = ¢n.
o dx 0

The right-hand side is calculated as follows.
' 2
f : oo’ dx = <
0 2

Tﬁus, it is clear that:

f’ocolo (8 — iR)2
where:
2 FgtT,y D] 7‘912 + 7!;02
= TKEF ( + PoBuo? ( b ol ) (35)
DISCUSSION

If there is no pressure drop and the linear velocity is distributed uniformly
along the column, the present theory is reduced to the original VAN DEEMTER theory.
Thus, the famous VAN DEEMTER theory is considered to hold as the limiting law and
quite legitimate in liquid phase chromatography.

If one integrates the product of concentration and linear velocity with respect
to time, the quantity obtained should express the amount of sample component
that penetrates a cross sectlon of unit area at an arbitrary position. Thus, it follows
that: -

oo
f C-u-dé = ColoUy (36)

-0

whence the conservation of material is proved.

The above procedure for evaluating the peak variance was also found success-
ful, when it was applied to the derivation of the VAN DEEMTER eqns. (6)~(x2) from
the LAPiDUsS-AMUNDsON system of differential eqns. (1)—(4). This result will be
published elsewhere?.

The expression for the height equivalent to a theoretical plate (H) is easily de-
rived from eqgns. (34) and (35), and it is found that it has the same form as shown by:

B
H =4+ — + Cu, (37)
o

However, the three constants A, B and C depend on pressure and have some-
what different meanings from those in the original VAN DEEMTER equation. For the

J: .Chromatoé., 21 (1966) 383-391I



DIFFUSION AND PRESSURE DROP IN GAS CHROMATOGRAPHY 389

elucidation of temperature and pressure dependencies of plate number8, the form of
Gaussian distribution seems fundamentally more important and useful, as discussed
in our former publications.

APPENDIX I. DERIVATION OF EQUATION (3I)

In eqn. (6) #, ¢ and ¢r are functions of x. Expressing the partial differentiation
with respect to x by a dash and that with respect to ¢ by a dot, such as C' = 6C/6x
and € = 8C/d¢, and putting:

Coto P ' (! —¢R)2
k= m(z—;z—)_‘ﬁ const.; f(x) = pt g(x,¢) = exp; {h(x0)}; h(x3) = — 3 az._.v
Tz |
ip = —-
B
one easily derives:
g = NWgig=n"ngg=1{+ (Mg 2 = ! 2.7 = —31-2;
, (! — tR)IR'G + 0'(¢ — R ., tr'c + 2 0'(t —IR)
o= _ B = - etc.

o3 o

Since we are interested in the region near the chromatographic peak, we may
put ¢ = ¢g. Then, the result is:

. e in}2 . o ’
k=h=h’=o;h=——-——1—;h”=—(n);h=_tf. B — (RO — 4RO .
o2 - ) o2’ )
. for ¢ = ¢p.
Thus, one obtains:
C(x,tp) = kfhg = o; C(¥,ir) = kfhg = — ;eé fg: C/(x,tr) = kf'g; C"(x,itR) =

(Ir")2 . k '
ce | o=

., (2 tr'f’ ir"c — 4 tr'c’
C (:V,tn) = k ('—6—2-—' + f P )
where:
,  pla—pd ,,  (p'c — pa’)o — 2 o’ (p'c — po’)
V= 1= o3

Insertion of the above equations into eqn. (28) yields eqns. (30) and (31).
APPENDIX II. SIMPLIFICATION OF H(0,D) AND DERIVATION OF EQNUATION (33)

The function H(o, D) shown by eqn. (30) can be rearranged by means of the
relatlonshlps :

D .

ak ' aK -
g 2 = X2 (62 4 o0”
in Fe oo’; tr” e {(c")2 + 00"}

J+ Chromatog., 21:(1966).383-391



390 T. KAMBARA, K. OHZEKI1
derived from the first-order approximation given by eqn. (32), and the result is:

.r,gy')d

— HeD) =5

2 (p')202 + 3 p2(0”)2 + (¢r')2p2 (38)

The ratio of the third term to the second in the right-hand side of the eqn. (38) is

()2 _ 4 tR®
3(e)2 30

% n ' (39)

where #, the number of plates, is much greater than unity. Hence one can neglect
the second term.
Next, the ratio of the third term to the first is given by:

PE(tr)2 _ mpR(iR’)?
2 (p))%% 2 (p))UR

Employing the equations:

(P8 — P3); tr' =

T3 mzwﬁ mﬁwﬁ (— 2%

one derives

752(,51;')2 _ on b’ 2
2 (p)%2 2 {uu/p)s—r}

Since # is much greater than unity, it is seen that the first term can legiti-
mately be ignored.
Thus, the function H(c,D) is simplified into:

aKKD*
H(oD) = — Foo® (¢r')2 (40)

resulting in eqn. (34).

SUMMARY

Provided that the flow rate of carrier gas in a gas chromatographic column is
maintained constant and the pressure and the linear velocity are distributed as shown
by eqns. (14)—(16), and also the diffusion coefficient in gas phase is inversely propor-
tional to the pressure, one can formulate the problem by eqns. (3), (4) and (22).
Assuming that the solution is shown by a Gaussian distribution as given by eqn. (6),
the above problem is converted into the integration of the ordinary differential
eqns. (30) and (31) concerning the peak variance. The calculation provides a revised
equation for gas chromatographic peak that 1ncludes the familiar VAN DEEMTER
theory as a limiting law.
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